Stochastic Nonparametric Envelopment of Data: Frontier Estimation Subject to Shape Constraints

نویسندگان

  • Timo Kuosmanen
  • Mika Kortelainen
چکیده

Literature of productive efficiency analysis is currently divided between two main paradigms: the parametric Stochastic Frontier Analysis (SFA) and the deterministic, nonparametric Data Envelopment Analysis (DEA). This paper develops a new encompassing framework that melds the SFA-style stochastic composite error term to the DEA-type nonparametric frontier that satisfies monotonicity and concavity. The new approach is referred to as Stochastic Nonparametric Envelopment of Data (StoNED). StoNED method utilizes convex nonparametric least squares (CNLS), which estimates the shape of the frontier without any assumptions about its functional form or smoothness. In crosssectional settings, distinguishing inefficiency from noise requires distributional assumptions, which can be relaxed in the case of panel data. We estimate the conditional expectations of inefficiency based on the CNLS residuals, using the method of moments and pseudolikelihood techniques. Performance of the StoNED procedure is examined using Monte Carlo simulations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stochastic Nonparametric Envelopment of Data: Cross-sectional frontier estimation subject to shape constraints

The field of production frontier estimation is divided between the parametric Stochastic Frontier Analysis (SFA) and the deterministic, nonparametric Data Envelopment Analysis (DEA). This paper explores an amalgam of DEA and SFA that melds a nonparametric frontier with a stochastic composite error. Our model imposes the standard SFA assumptions for the inefficiency and noise terms. The frontier...

متن کامل

Data Envelopment Analysis as Least-Squares Regression

Data envelopment analysis (DEA) is an axiomatic, mathematical programming approach to productive efficiency analysis and performance measurement. This paper shows that DEA can be interpreted as a nonparametric least squares regression subject to shape constraints on production frontier and sign constraints on residuals. Thus, DEA can be seen as a nonparametric counter-part of the corrected ordi...

متن کامل

Stochastic non-smooth envelopment of data: Semi-parametric frontier estimation subject to shape constraints

The field of productive efficiency analysis is currently divided between two main paradigms: the deterministic, nonparametric Data Envelopment Analysis (DEA) and the parametric Stochastic Frontier Analysis (SFA). This paper examines an encompassing semiparametric frontier model that combines the DEA-type nonparametric frontier, which satisfies monotonicity and concavity, with the SFA-style stoc...

متن کامل

Data Envelopment Analysis as Nonparametric Least-Squares Regression

Data Envelopment Analysis (DEA) is known as a nonparametric mathematical programming approach to productive efficiency analysis. In this paper we show that DEA can be alternatively interpreted as nonparametric least squares regression subject to shape constraints on frontier and sign constraints on residuals. This reinterpretation reveals the classic parametric programming model by Aigner and C...

متن کامل

Stochastic Nonparametric Envelopment of Panel Data: Frontier Estimation with Fixed and Random Effects Approaches

Stochastic nonparametric envelopment of data (StoNED) combines the virtues of data envelopment analysis (DEA) and stochastic frontier analysis (SFA) into a unified framework of frontier estimation. StoNED melds the nonparametric piece-wise linear DEA-type frontier with stochastic SFA-type inefficiency and noise terms. We show that the StoNED model can be estimated in the panel data setting in a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009